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Introduction

Sugar cane Sugar cane breaks Water added

Bagasse Sugar Extraction

Figure: Moisture levels of 45 - 55%



Problem Description

• Stockpile as a resource

• Spontaneous combustion

• T. F. Dixon (1988)

• B. F. Gray et al (2002)

Figure: One Dimensional Model with an insulated bottom



Desired Outcomes

• Maximum height of the bagasse heap to avoid spontaneous combustion?

• Advantage in adjusting the moisture? (Usable energy per unit area)

• Advantage in pelletizing the bagasse?(Usable energy per unit area)



1D-Model formulation: B. F. Gray et. al 2001

Governing equations

(ρbcb + mwXcw )
∂U

∂t
= QρbZW exp(−E/RU)

+ QwρbZwXW exp(−Ew/RU)f (U)

+ Lv [ZcY − ZeX exp(−Lv/RU)] + κ∇2U, (1)

∂Y

∂t
= ZeX exp(−Lv/RU)− ZcY + DY∇2Y , (2)

∂X

∂t
= −ZeX exp(−Lv/RU) + ZcY , (3)

∂W

∂t
= −FρbZW exp(−E/RU)− FρbZwXW exp(−Ew/RU)f (U)

+ Dw∇2W . (4)

U is temperature, Y is vapour concentration, X is liquid concentration,
W is oxygen concentration



1D-Model formulation cont’d

Boundary Conditions

At the bottom, x = 0, we impose the no flow condition (of heat or
material)

∂U

∂x
= 0,

∂Y

∂x
= 0,

∂W

∂x
= 0, (5)

At the top surface, x = L,

k
∂U

∂x
= h(U−Ua), −DY

∂Y

∂x
= hY (Y−Ya), −DW

∂W

∂x
= hW (W−Wa), (6)

Initial Conditions

U(x , 0) = U0(x), Y (x , 0) = Y0(x), (7)

X (x , 0) = X0(x), W (x , 0) = W0(x). (8)



1D-Model formulation cont’d

Steady-state equations

0 = DY
∂2Y

∂x2
+ ZeX exp

(
− Lv
RU

)
− ZcY (9)

0 = −ZeX exp

(
− Lv
RU

)
+ ZcY (10)

Yxx = 0 ⇒ Ys = Ya, Xs =
ZcYa

Ze
exp

(
Lv
RU

)
(11)

0 = k
∂2U

∂x2
+ QρbZW exp

(
− E

RU

)
+ QwρbZwXsW exp

(
− Ew

RU

)
f (U)

(12)



1D-Model formulation cont’d

0 = DW
∂2W

∂x2
− FρbZW exp

(
− E

RU

)
− FρbZwXW exp

(
− Ew

RU

)
f (U)

(13)

If bagasse is hot (everywhere above 58C), then

k

Q

∂2U

∂x2
+

DW

F

∂2W

∂x2
= 0 (14)

Applying boundary conditions at x = 0

k

Q
U +

DW

F
W = C0 (15)

∆Y = Ya ∆W = Wa ∆X =
ZcYa

Ze
exp

(
Lv
RUi

)
∆U = Ui −Ua



Dimensionless form

Non-dimensional model

t̂ =
t

∆t
, x̂ =

x

L
, Û =

U − Ua

∆U
, Ŷ =

Y

∆Y
,

X̂ =
X

∆X
, Ŵ =

W

∆W
, (16)

Diffusion time scale is ∆t =
L2(ρbcb + mwcw∆X )

k
=

L2

DU
, (17)

The liquid equation is

1

Ze∆t
exp

(
Lv
RUi

)
∂X̂

∂ t̂
= −X̂ exp

(
αLv (Û − 1)

Ua + ∆UÛ

)
+ Ŷ , (18)

where

αLv =
Lv∆U

RUi
. (19)



Dimensionless form

Coefficient of LHS is O(10−5), hence

X̂ = exp

(
−αLv (Û − 1)

Ua + ∆UÛ

)
Ŷ (20)

Lose terms in heat and vapour equations
Vapour equation

κY
∂Ŷ

∂ t̂
=
∂2Ŷ

∂x̂2
, where κY =

L2

∆tDY
= O(10−1). (21)

(β1 + β2X̂ )
∂Û

∂ t̂
=
∂2Û

∂x̂2
+ AEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

+ AEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (22)



Dimensionless form

where

β1 =
ρbcbL

2

k∆t
β2 =

mwcw∆XL2

k∆t
(23)

AE =
QρbZ∆WL2

k∆U
exp

(
− E

RUi

)
(24)

AEw =
QwρbZw∆X∆WL2

k∆U
exp

(
− Ew

RUi

)
, (25)

αE =
E∆U

RUi
, αEw =

Ew∆U

RUi
(26)



Dimensionless form

The oxygen equation becomes

κW
∂Ŵ

∂ t̂
=
∂2Ŵ

∂x̂2
− BEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

− BEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (27)

where

κW =
L2

∆tDW
BE =

FρbZL
2

DW
exp

(
− E

RUi

)
(28)

BEw =
FρbZw∆XL2

Dw
exp

(
− Ew

RUi

)
. (29)



Dimensionless form

Boundary conditions

At x̂ = 0 :
∂Û

∂x̂
= 0,

∂Ŷ

∂x̂
= 0,

∂Ŵ

∂x̂
= 0, at x̂ = 0,

(30)

At x̂ = 1 :

− ∂Û

∂x̂
= γÛ, −∂Ŷ

∂x̂
= γY (Ŷ − 1), −∂Ŵ

∂x̂
= γW (Ŵ − 1),

(31)

where

γ =
hL

k
, γY =

hY L

DY
, γW =

hW L

DW
. (32)

Note γ = O(10), γY = γW = O(105) so we may simplify the boundary
conditions Ŷ = Ŵ = 1 at x̂ = 1. The initial conditions are

U = U0, Y = Y0, W = W0, at t = 0 (33)



Discussion

Simplest model

Steady-state temperature

0 =
∂2Û

∂x̂2
+ A exp

(
α(Û − 1)

Ua + ∆UÛ

)
(34)

This is standard form, but leads to very small piles



Discussion

What happens when the density is not assumed constant?



Discussion

Pseudo steady-state
κW , κY small

X̂ = exp

(
−αLv (Û − 1)

Ua + ∆UÛ

)
Ŷ Ŷ = 1 (35)

(β1 + β2X̂ )
∂Û

∂ t̂
=
∂2Û

∂x̂2
+ AEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

+ AEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (36)

0 =
∂2Ŵ

∂x̂2
− BEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

− BEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (37)



Discussion

Almost full problem

X̂ = exp

(
−αLv (Û − 1)

Ua + ∆UÛ

)
Ŷ (38)

κY
∂Ŷ

∂ t̂
=
∂2Ŷ

∂x̂2
, (39)

(β1 + β2X̂ )
∂Û

∂ t̂
=
∂2Û

∂x̂2
+ AEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

+ AEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (40)

κW
∂Ŵ

∂ t̂
=
∂2Ŵ

∂x̂2
− BEŴ exp

(
αE (Û − 1)

Ua + ∆UÛ

)

− BEw X̂ Ŵ exp

(
αEw (Û − 1)

Ua + ∆UÛ

)
f (Û), (41)

which shows Y = 1



Note, insulated bottom and 100% humidity. Pile height increases with
lower humidity



Typical evolution of temperature



Often appears piles can be very large without ignition but ...

What if it rains?



Ignition model — words

Puzzle: why do apparently stable heaps ignite after getting soaked?

— wet reaction is fast, but turns off for temperatures above 58 ◦C,
— dry reaction is slower
So, near centre the bagasse dries out and starts to heat above the 58 ◦C
limit. We imagine two steady states:

inner: hot and dry, insulated inner end, at 58 ◦C at interface
outer: warm and wet, 58 ◦C at interface, cooling condition at surface

Stefan problem with moving boundary



Ignition model — diagram

Please use confor-
mal mapping to
imagine this as a
square with a hot
yellow and a warm
red band . . .

We have a good handle on equations for the steady states, but haven’t got
a formulation for the velocity of the moving interface



Conclusion

We have a model for temperature evolution in bagasse piles - can be
made simpler

Steady-state models should be sufficient - to provide bifurcation
diagram

For any ambient conditions we can cause ignition, by making the pile
sufficiently large

Under normal conditions pile does not burn, but adding water can
then cause ignition

We have looked at a worst case scenario - insulated bottom, no heat
loss at sides. Model can be improved.

Future work will constitute consideration of a more realistic boundary
condition at the bottom, 2D model with heat loss at the sides;
compare full system to simplified models.
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