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Problem Description
e Stockpile as a resource
e Spontaneous combustion
e T. F. Dixon (1988)

e B. F. Gray et al (2002)

Figure: One Dimensional Model with an insulated bottom



Desired Outcomes

e Maximum height of the bagasse heap to avoid spontaneous combustion?
e Advantage in adjusting the moisture? (Usable energy per unit area)

e Advantage in pelletizing the bagasse?(Usable energy per unit area)



1D-Model formulation: B. F. Gray et. al 2001

Governing equations

ou
(Pocb + muXew)—— = QppZW exp(—E/RU)

ot
+ prbZWXW eXp(_ EW/RU) f( U)

+ L,[Z.Y — Z X exp(—L,/RU)] + kV3U, (1)

881/:ZeXexp(—LV/RU)—ZcY-i-DYVzYa (2)
o0X

S = —ZeXexp(~Ly/RU) + 2.V, (3)
oW

5. = ~FrZW exp(—E/RU) = FppZu XW exp(—Ew/RU)f(U)

+ D, V2W. (4)

U is temperature, Y is vapour concentration, X is liquid concentration,
W is oxygen concentration



1D-Model formulation cont’'d

Boundary Conditions

At the bottom, x = 0, we impose the no flow condition (of heat or
material)

ou oY ow
A B ®)
At the top surface, x = L,
ZU h(U—U,), —Dy %y hy(Y=Y,), DW%W hw(W—W,), (6)
Initial Conditions
U(x,0) = Up(x), Y (x,0) = Yo(x), (7)

X(x,0) = Xp(x), W(x,0) = Wo(x). (8)



1D-Model formulation cont’'d

Steady-state equations
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1D-Model formulation cont’'d
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If bagasse is hot (everywhere above 58C), then
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Applying boundary conditions at x =0
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Dimensionless form

Non-dimensional model
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Diffusion time scale is

The liquid equation is
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Dimensionless form

Coefficient of LHS is O(107°), hence

Ko uW=1)y
Us + AUD

Lose terms in heat and vapour equations
Vapour equation
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Dimensionless form

where
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Dimensionless form

The oxygen equation becomes
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Dimensionless form

Boundary conditions

. .00 oy ow .
At xX=0: 8)?_0’ 8)?_0’ 8)?_0’ at x =0,
(30)
At R =
oU - oY . oW .
- — = — = Y -1 - = W-1
(31)
where
hL hy L hwl
= Y =p W= g (32)

Note v = O(10), vy

= yw = O(10°) so we may simplify the boundary

conditions Y = W =1 at X = 1. The initial conditions are
(33)

U = U, Y = Yo,

W=W, att=0



Discussion

Simplest model

Steady-state temperature

This is standard form, but leads to very small piles

(34)



Discussion

What happens when the density is not assumed constant?

An effect of depth—dependent density
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Discussion

Pseudo steady-state
Ew, ky small
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Discussion

Almost full problem
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Often appears piles can be very large without ignition but ...
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lgnition model — words

Puzzle: why do apparently stable heaps ignite after getting soaked?

— wet reaction is fast, but turns off for temperatures above 58 °C,

— dry reaction is slower

So, near centre the bagasse dries out and starts to heat above the 58 °C
limit. We imagine two steady states:

inner: hot and dry, insulated inner end, at 58 °C at interface
outer: warm and wet, 58 °C at interface, cooling condition at surface

Stefan problem with moving boundary



lgnition model — diagram

Please use confor-
mal mapping to
imagine this as a
square with a hot
yellow and a warm
red band ...

We have a good handle on equations for the steady states, but haven't got
a formulation for the velocity of the moving interface



Conclusion

@ We have a model for temperature evolution in bagasse piles - can be
made simpler



Conclusion

@ We have a model for temperature evolution in bagasse piles - can be
made simpler

@ Steady-state models should be sufficient - to provide bifurcation
diagram



Conclusion

@ We have a model for temperature evolution in bagasse piles - can be
made simpler

@ Steady-state models should be sufficient - to provide bifurcation
diagram

@ For any ambient conditions we can cause ignition, by making the pile
sufficiently large



Conclusion

@ We have a model for temperature evolution in bagasse piles - can be
made simpler

@ Steady-state models should be sufficient - to provide bifurcation
diagram

@ For any ambient conditions we can cause ignition, by making the pile
sufficiently large

@ Under normal conditions pile does not burn, but adding water can
then cause ignition



Conclusion

@ We have a model for temperature evolution in bagasse piles - can be
made simpler

@ Steady-state models should be sufficient - to provide bifurcation
diagram

@ For any ambient conditions we can cause ignition, by making the pile
sufficiently large

@ Under normal conditions pile does not burn, but adding water can
then cause ignition

@ We have looked at a worst case scenario - insulated bottom, no heat
loss at sides. Model can be improved.

@ Future work will constitute consideration of a more realistic boundary

condition at the bottom, 2D model with heat loss at the sides;
compare full system to simplified models.
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